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Abstract
In a semiclassical context we investigate the Zitterbewegung of relativistic
particles with spin 1/2 moving in external fields. It is shown that the analogue
of Zitterbewegung for general observables can be removed to arbitrary order
in h̄ by projecting to dynamically almost invariant subspaces of the quantum
mechanical Hilbert space which are associated with particles and anti-particles.
This not only allows us to identify observables with a semiclassical meaning,
but also to recover combined classical dynamics for the translational and
spin degrees of freedom. Finally, we discuss properties of eigenspinors of a
Dirac–Hamiltonian when these are projected to the almost invariant subspaces,
including the phenomenon of quantum ergodicity.

PACS numbers: 03.65.Pm, 03.65.Sq, 05.45.Mt

1. Introduction

When Dirac had introduced his relativistic quantum theory for spin-1/2 particles it soon
became clear that despite its overwhelming success in producing the correct hydrogen
spectrum, including fine structure, this theory was plagued with a number of apparent
inconsistencies as, e.g., Klein’s paradox [Kle29]. Schrödinger observed [Sch30] that the
(free) time evolution of the naive position operator, which he had taken over from non-
relativistic quantum mechanics, contained a contribution without any classical interpretation.
Since this term was rapidly oscillating he introduced the notion of Zitterbewegung (trembling
motion). Schrödinger wanted to explain this effect as being caused by spin. Later, however, it
became clear that all paradoxes stemmed from the coexistence of particles and anti-particles
in Dirac’s theory, and that only a quantum field theoretic description, predicting pair creation
and annihilation, could cure these problems in a fully satisfactory manner.

It nevertheless turned out that relativistic quantum mechanics was capable of describing
many important physical phenomena; e.g., in atomic physics it serves to explain spectra of
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large atoms and in nuclear physics it allows us to construct models of nuclei. Within the context
of this theory one can remove the Zitterbewegung of free particles by introducing modified
position operators that are associated with either only particles or only anti-particles. These
operators are free from the particle/anti-particle interferences that cause the Zitterbewegung;
for details see, e.g., [Tha92]. In the case of interactions (with external potentials) the
Zitterbewegung cannot be exactly eliminated. It is, however, possible to devise an asymptotic
construction, e.g. based on the Foldy–Wouthuysen transformation. This involves a non-
relativistic expansion, and when applied to the Dirac equation, reproduces in leading order
the Pauli equation. The genuinely relativistic coexistence of particles and anti-particles is
therefore removed in a natural way.

Similar constructions are possible in a semiclassical context while maintaining the
relativistic level of description. The decoupling of particles from anti-particles then proceeds
asymptotically order by order in powers of the semiclassical parameter h̄. In this direction
several approaches have been developed recently, aiming at semiclassical expansions for
scattering phases [BN99, BR99] or at recovering the Thomas precession of the spin [Spo00],
see also [Cor01, Teu03]. In other semiclassical approaches trace formulae of the Gutzwiller
type have been derived [BK98, BK99], see also [Kep03]. Here our goal is to introduce
a general semiclassical framework for the Dirac equation, and in particular to identify a
sufficiently large algebra of quantum mechanical observables that can be assigned a classical
analogue in a way that is consistent with the dynamics. And in contrast to previous studies we
do not construct semiclassical (unitary) Foldy–Wouthuysen operators but use the associated
projection operators, thus avoiding ambiguities in the choice of the unitaries.

The outline of this paper is as follows. In section 2 we recall the phenomenon of
Zitterbewegung of free relativistic particles, emphasizing that this effect can be removed
through an introduction of suitably modified position operators. The following section is
devoted to the construction of projection operators that semiclassically separate particles from
anti-particles in the presence of an interaction with external potentials. Quantum observables
with a semiclassical meaning are introduced in section 4, and a characterization of such
observables that maintain this property under their time evolution is provided. Section 5
contains a discussion of the classical dynamics emerging from the quantum dynamics generated
by a Dirac–Hamiltonian in the semiclassical limit. It is shown that a combined time evolution of
the translational and the spin degrees of freedom arises in the form of a so-called skew-product.
Finally, in section 6 we discuss to what extent eigenspinors of a Dirac–Hamiltonian can be
associated with either particles or anti-particles. We also show that an ergodic behaviour of the
combined classical dynamics implies quantum ergodicity, i.e. a semiclassical equidistribution
on particle and anti-particle energy shells of eigenspinor projections to the respective energy
shells.

2. Zitterbewegung for the free motion

Since its early discovery by Schrödinger Zitterbewegung has mostly been discussed in the
context of the Dirac equation for a free relativistic particle of mass m and spin 1/2, whose
Hamiltonian reads

Ĥ 0 := −ih̄cα · ∇ + βmc2. (2.1)

The relations αkαl + αlαk = 2δkl and αkβ + βαk = 0 (k, l = 1, 2, 3) defining the Dirac
algebra are realized by the 4 × 4 matrices

α =
(

0 σ

σ 0

)
and β =

(
112 0
0 −112

)
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where σ = (σ1, σ2, σ3) is the vector of Pauli spin matrices and 11n denotes the n × n unit
matrix. The operator (2.1) is essentially self-adjoint on the dense domain C∞

0 (R3) ⊗ C
4 in

the Hilbert space H := L2(R3) ⊗ C
4; its spectrum is absolutely continuous and comprises

(−∞,−mc2) ∪ (mc2,∞); see e.g., [Tha92]. The time evolution (free motion)

Û 0(t) := e− i
h̄
Ĥ 0t

hence is unitary.
In his seminal paper [Sch30] Schrödinger solved the free time evolution of the standard

position operator x̂, whose components are defined as multiplication operators on a suitable
domain in L2(R3)⊗C

4. His intention was to resolve the apparent paradox that the spectrum of
the velocity operator resulting from the Heisenberg equation of motion for the standard position
operator, ˙̂x(t) = cα(t), consists of ±c, whereas the classical velocity of a free relativistic
particle reads c2p/

√
p2c2 + m2c4 and thus is smaller than c in magnitude. Integrating the

equations of motion Schrödinger found

x̂(t) = Û 0(t)
∗x̂Û 0(t)

= x̂(0) + c2p̂Ĥ
−1
0 t +

h̄

2i
Ĥ

−1
0

(
e

2i
h̄
Ĥ 0t − 1

)
F̂ . (2.2)

The first two terms of this result exactly correspond to the respective classical dynamics of a
free relativistic particle. The third term, however, contains the operator

F̂ := cα − c2p̂Ĥ
−1
0

which is well defined since zero is not in the spectrum of Ĥ 0 and thus Ĥ
−1
0 is a bounded

operator. The quantity F̂ expresses the difference between the velocity operator and the
quantization of the classical velocity. This additional term introduces a rapidly oscillating
time dependence and hence was named Zitterbewegung (trembling motion) by Schrödinger.

After Schrödinger’s work [Sch30] the origin of the Zitterbewegung was traced back to
the coexistence of particles and anti-particles in relativistic quantum mechanics. Therefore,
this effect can be removed by projecting the standard position operator to the particle and anti-
particle subspaces of H , respectively. To this end one introduces the projection operators

P̂ ±
0 := 1

2 (11H ± |Ĥ 0|−1Ĥ 0) (2.3)

with |Ĥ 0| := (Ĥ
∗
0Ĥ 0)

1/2, fulfilling P̂ +
0P̂

−
0 = 0 and P̂ +

0 + P̂ −
0 = 11H . The time evolution of

the projected position operators

x̂±
0 := P̂ ±

0 x̂P̂ ±
0 (2.4)

is then given by (see [Tha92])

x̂±
0 (t) = x̂±

0 (0) + c2p̂Ĥ
−1
0 t P̂ ±

0 .

It hence exactly corresponds to the respective classical expression; and this is true for both
particles and anti-particles. The interpretation of this observation is obvious: particles and anti-
particles show noticeably different time evolutions and the Zitterbewegung in (2.2) represents
the interference term [Tha92]

P̂ +
0x̂P̂ −

0 + P̂ −
0 x̂P̂ +

0 = ih̄

2
Ĥ−1

0 F̂

that is absent in a classical description.
We remark that the projected position operators (2.4) differ from the Newton–Wigner

position operators introduced in [NW49]. Whereas the latter also respect the splitting of the
Hilbert space into particle and anti-particle subspaces, they arise from the standard position
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operator by unitary transformations. The Newton–Wigner operators are unique in the sense
that they possess certain natural localization properties [Wig62]. However, it is well known
that in relativistic quantum mechanics no position operators exist that leave the particle and
anti-particle subspaces invariant, share the natural localization properties and do not violate
Einstein causality; see, e.g., the discussion in [Tha92]. Thus even for free particles no
complete quantum–classical correspondence exists. The goal we want to achieve in the
following hence is to promote a method that allows us to separate particles from anti-particles
in a semiclassical fashion: the Hilbert space is split into mutually orthogonal subspaces and
observables are projected to these subspaces. Within these subspaces one can then employ
semiclassical techniques and set up quantum–classical correspondences. In the following
section we are going to extend this concept to particles interacting with external fields. In
this situation even a separation of H into subspaces that are associated with particles and
anti-particles, respectively, can only be achieved asymptotically (in the semiclassical limit).

3. Semiclassical projection operators

We now consider the Dirac equation

ih̄
∂

∂t
ψ(t,x) = Ĥψ(t,x)

for a particle of mass m and charge e coupled to external time-independent electromagnetic
fields E(x) = −grad φ(x) and B(x) = rot A(x). The Hamiltonian therefore reads

Ĥ = cα ·
(

h̄

i
∇ − e

c
A(x)

)
+ βmc2 + eφ(x). (3.1)

For convenience we restrict our attention to smooth potentials, in which case the operator (3.1)
is known to be essentially self-adjoint on the domain C∞

0 (R3) ⊗ C
4 (see, e.g., [Tha92]) and

hence defines a unitary time evolution

Û (t) := e− i
h̄
Ĥ t .

In order to separate particles and anti-particles also in the presence of electromagnetic
fields one would like to construct projection operators analogous to (2.3) that commute with
the Hamiltonian. This, however, is not possible as can be seen by considering operators in a
phase-space representation. Here we choose the Wigner–Weyl calculus in which an operator
B̂ on H is defined in terms of a function B(x,p) on phase space taking values in the 4 × 4
matrices,

(B̂ψ)(x) = 1

(2πh̄)3

∫ ∫
R

3×R
3
e

i
h̄
p·(x−y)B

(x + y

2
,p

)
ψ(y) dy dp. (3.2)

This operator is well defined on Dirac spinors ψ ∈ S (R3) ⊗ C
4, if the matrix-valued Weyl

symbol B(x,p) is smooth. For this and further details of the Weyl calculus see [Fol89, Rob87,
DS99]. Introducing then, e.g., the symbol

H(x,p) = cα ·
(
p − e

c
A(x)

)
+ βmc2 + eφ(x) (3.3)

one can represent the Hamiltonian (3.1) as a Weyl operator (3.2). For each point (x,p) in
phase space the symbol (3.3) is a Hermitian 4 × 4 matrix with the two doubly degenerate
eigenvalues

h±(x,p) = eφ(x) ±
√

(cp − eA(x))2 + m2c4. (3.4)
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These functions can immediately be identified as the classical Hamiltonians of particles and
anti-particles, respectively, without spin. Associated with these eigenvalues are the projection
matrices

	±
0 (x,p) = 1

2

(
114 ± α · (cp − eA(x)) + βmc2√

(cp − eA(x))2 + m2c4

)
(3.5)

onto the respective eigenspaces in C
4. In the absence of potentials the matrix-valued functions

(3.5) are independent of x and their Weyl quantizations according to (3.2) yield the projectors
(2.3). One could hence be tempted to view the Weyl quantizations 	̂±

0 of the symbols (3.5)
as appropriate substitutes for the operators (2.3) in the general case. Indeed, if the partial
derivatives of A(x) are bounded, the quantities (3.5) and all their partial derivatives are
bounded smooth functions of (x,p) such that the operators 	̂±

0 are self-adjoint and bounded
on the Hilbert space H [CV71]. The fact that the symbols (3.5) depend on x, however,
implies that 	̂±

0 are not projection operators, but satisfy [EW96](
	̂±

0

)2 − 	̂±
0 = O(h̄). (3.6)

Moreover, 	̂±
0 do not commute with the Hamiltonian.

The error on the right-hand side of (3.6) can be improved by adding a suitable term of
order h̄ to the symbol (3.5). To guarantee that the Weyl quantization of this symbol leads to
a bounded operator, we now require that the potential φ(x) and all its partial derivatives are
bounded, and that A(x) grows at most like some power |x|K . In this case the quantity

ε(x,p) :=
√

(cp − eA(x))2 + m2c4 (3.7)

may serve as a so-called order function for the symbol (3.3) and the construction of [BG04]
applies. After quantization of the corrected symbol this leads to an operator that is a projector
up to an error of order h̄2. This procedure can be repeated to an arbitrary order h̄N , see [EW96,
BN99]. One hence obtains almost projection operators 	̂± that almost commute with the
Hamiltonian,

(	̂±)2 − 	̂± = O(h̄∞) and [Ĥ , 	̂±] = O(h̄∞) (3.8)

meaning that the operator norm of the above expressions is smaller than any power of h̄.
Furthermore,

	̂+	̂− = O(h̄∞) and 	̂+ + 	̂− = 11H + O(h̄∞). (3.9)

As a consequence of 	̂± being almost projectors, their spectrum is concentrated around zero
and one. The standard Riesz projection formula therefore allows us to construct the genuine
orthogonal projectors

P̂ ± := 1

2π i

∫
|λ−1|= 1

2

(	̂± − λ)−1 dλ

which also almost commute with Ĥ and fulfil (3.9).
Since the above construction is based on the separation into particles and anti-particles

on a classical level (3.4) and is then extended order by order in h̄, one can view the
subspaces H ± := P̂ ±H as being semiclassically associated with particles and anti-particles,
respectively. Moreover, due to relation (3.8) these subspaces are almost invariant with respect
to the time evolution generated by Ĥ , i.e.

Û (t)P̂ ±ψ − P̂ ±Û (t)ψ = O(th̄∞) for all ψ ∈ H .

Hence, up to a small error every spinor in one of the subspaces H ± remains under the time
evolution within this subspace; and this is true for semiclassically long times t � h̄−N , where
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N can be chosen arbitrarily large. This result is in agreement with the (heuristic) physical
picture that particles interact with anti-particles via tunnelling; the latter is a genuine quantum
process with pair production and annihilation rates that are exponentially small in h̄. Related to
this observation is the fact that eigenspinors of the Hamiltonian can (only) almost be associated
with particles or anti-particles: If ψn ∈ H is an eigenspinor, Ĥψn = Enψn, its projections
P̂ ±ψn are in general only almost eigenspinors (quasimodes), i.e.

(Ĥ − En)P̂
±ψn = O(h̄∞).

Thus the discrete spectrum of the Hamiltonian cannot truly be divided into a particle and an
anti-particle part. Further consequences will be investigated in section 6.

The above discussion raises the question whether the semiclassical projectors P̂ ± can
(at least semiclassically) be related to spectral projections of the Hamiltonian. According to
(2.3), in the case without potentials the operators P̂ ±

0 are obviously the spectral projectors to
(−∞,−mc2) and (mc2,∞), which are exactly the (absolutely continuous) spectral stretches
associated with particles and anti-particles, respectively. In the presence of potentials,
depending on their behaviour at infinity, there exist constants E+ > E− such that the spectrum
inside (E−, E+) is discrete and absolutely continuous outside; e.g., if the potentials and their
derivatives vanish at infinity one finds E± = ±mc2, see [Tha92]. For E ∈ (E−, E+) not in
the spectrum of Ĥ we then denote the spectral projectors to (−∞, E) and (E,∞) by P̂ −

E and
P̂ +

E , respectively. For the rest of this section we also assume that

h−(x,p) < E < h+(x,p) for all (x,p)

i.e., the classical particle and anti-particle Hamiltonians are separated by a gap as (x,p) runs
over phase space. Therefore, the two classical energy shells

�±
E = {(x,p);h±(x,p) = E}

are empty and, moreover, for any value E′ at least one of the energy shells �±
E′ is empty.

On the submanifold p = e
c
A(x) this condition requires that the variation of the potential

φ(x) is strictly restricted by 2mc2. In such a situation the semiclassical projectors P̂ ± are
semiclassically close to the spectral projectors,∥∥P̂ ± − P̂ ±

E

∥∥ = O(h̄∞).

A full proof of this statement can be found in [BG04].

4. Semiclassical observables

The example of the standard position operator for the free particle and its Zitterbewegung
demonstrates that not all quantum observables possess a direct (semi-) classical interpretation.
Only the diagonal blocks with respect to the projections P̂ ±

0 allow for establishing quantum–
classical correspondences. This observation applies in particular to dynamical questions
because only after projection there exists an unambiguous classical Hamiltonian (3.4).
Following the discussion in the previous section, these remarks carry over to the general
case appropriately. Our aim therefore is to identify a sufficiently large class of observables
with a semiclassical meaning. We moreover require this class to be invariant with respect to
the quantum time evolution, i.e. B̂ being of this class should imply that B̂(t) = Û (t)∗B̂Û (t)

is of the same type.
A natural starting point in the present context is to choose the Weyl representation (3.2)

for operators on H . It is well known that this is possible for a fairly large class of operators,
namely those that are continuous from S (R3 × R

3) ⊗ C
4 to S ′(R3 × R

3) ⊗ C
4; see, e.g.,

[Fol89, DS99]. In order to achieve manageable algebraic properties, however, one must restrict
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the class of operators further. For convenience we here choose Weyl quantizations of smooth
symbols B(x,p) that are, along with all of their partial derivatives, bounded on R

3 ×R
3. This

restriction leads to bounded operators on H , see [CV71]. We admit h̄-dependent symbols,
since even when restricting to quantizations B̂ of h̄-independent symbols B(x,p) their time
evolutions B̂(t) will necessarily acquire an h̄-dependence in their symbols B(t)(x,p; h̄). But
for the purpose of convenient semiclassical asymptotics we restrict the h̄-dependence in a
particular way,

B(x,p; h̄) ∼
∞∑

k=0

h̄kBk(x,p). (4.1)

The asymptotic expansion is to be understood in the sense that∥∥∥∥∥∂α
x ∂β

p

(
B(x,p; h̄) −

N−1∑
k=0

h̄kBk(x,p)

)∥∥∥∥∥
4×4

� C
(N)
α,β h̄N (4.2)

holds for all (x,p) ∈ R
3 × R

3 and all N ∈ N uniformly in h̄ as h̄ → 0, where ‖·‖4×4

denotes an arbitrary matrix norm. We call the quantizations of such symbols semiclassical
observables. These form a subalgebra Osc in the algebra of bounded operators on H . As
usual, only the self-adjoint elements of Osc are true quantum mechanical observables; they
can be characterized by symbols taking values in the Hermitian 4 × 4 matrices.

The crucial point now is to identify a subalgebra Oinv in Osc that is invariant with respect to
the quantum time evolution. We recall that in the case of scalar operators, such as Schrödinger–
Hamiltonians on L2(R3), the respective algebra Osc itself is invariant; see, e.g., [Rob87]. The
Zitterbewegung of a free relativistic particle, however, shows that in the present context this
can no longer hold. This example also suggests that Oinv might consist of those semiclassical
observables that are block-diagonal with respect to the semiclassical projections P̂ ±. In the
following we are going to demonstrate that this is indeed the case.

Since the necessary constructions take place in terms of symbols, we first recall how the
algebraic properties of semiclassical observables are reflected on this level; see, e.g., [Fol89,
Rob87, DS99]: the product of two semiclassical observables B̂, Ĉ ∈ Osc is a Weyl operator
with a symbol denoted by B#C(x,p; h̄). This symbol has an asymptotic expansion of the
type (4.1) and (4.2) that reads

B#C(x,p; h̄) ∼
∞∑

j,k,l=0

h̄j+k+l

j !

( i

2
(∇x · ∇ξ − ∇p · ∇y)

)j

Bk(p,x)Cl(ξ,y)

∣∣∣∣ y=x
ξ=p

.

We remark that if the operator Ĉ is replaced by the Hamiltonian Ĥ a corresponding product
formula for the symbol B#H(x,p; h̄) exists, with the exception that on the right-hand side of
the estimates (4.2) the order function (3.7) appears as an additional factor.

We are now in a position to write down the Heisenberg equation of motion for the time
evolution B̂(t) of a semiclassical observable in terms of symbols,

∂

∂t
B(t)(x,p; h̄) = i

h̄
(H#B(t) − B(t)#H)(x,p; h̄). (4.3)

The strategy we follow now is to assume an asymptotic expansion of the form (4.2) for the
symbol B(t)(x,p; h̄), insert this into (4.3) and solve, if possible, the hierarchy of equations for
the coefficients B(t)k(x,p) of h̄k . A first obstacle to this procedure arises upon investigating
the leading terms on the right-hand side of (4.3),

∂

∂t
B(t) = i

h̄
[H,B(t)0] − 1

2
({H,B(t)0} − {B(t)0,H }) + i[H,B(t)1] + O(h̄). (4.4)
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Here [·, ·] is a matrix commutator and

{B,C}(x,p) = (∇pB · ∇xC − ∇xB · ∇pC)(x,p)

denotes the Poisson bracket for matrix-valued functions on phase space. Due to the factor of
1/h̄ in the first term on the right-hand side of (4.4) the proposed strategy can only be consistent
if the matrix-valued function B(t)0(x,p) is block-diagonal with respect to the eigenprojections
	±

0 (x,p) of the symbol matrix H(x,p). This condition is the lowest semiclassical order of
the expected restriction on the operators in Oinv.

Necessary and sufficient conditions to be imposed on semiclassical observables to be in
Oinv can be obtained in any semiclassical order, if the solvability of equations (4.3) for the
diagonal and for the off-diagonal blocks of B(t) with respect to the projection symbols 	±

are investigated. This leads to the following.

Theorem 4.1. A semiclassical observable B̂ ∈ Osc lies in the invariant algebra Oinv, if and
only if its off-diagonal blocks with respect to the semiclassical projections P̂ ± are smaller
than any power of h̄,

P̂ ±B̂P̂ ∓ = O(h̄∞). (4.5)

This statement is a version appropriate for the Dirac equation of a result proved in [BG04].
The Hamiltonian (3.1) is not in Oinv, but this is only due to our restriction to bounded

operators; otherwise, relations (3.8) and (3.9) imply that Ĥ indeed possesses the property
(4.5). Furthermore, up to errors of the order h̄∞ the time evolution of the diagonal blocks
P̂ ±B̂P̂ ± is governed by the projected Hamiltonians Ĥ P̂ ±. An interpretation of theorem 4.1
now is rather obvious: an observable remains semiclassical under the quantum dynamics if it
does not contain off-diagonal blocks representing an interference of particle and anti-particle
dynamics, since this has no classical equivalent. Terms exceptional to this must be smaller
than any power of h̄, indicating that they arise from pure quantum effects.

5. Classical limit of quantum dynamics

Given an observable B̂ ∈ Oinv, we are interested in the connection between its time evolution
B̂(t) and appropriate classical dynamics. The diagonal blocks of B̂ are (approximately)
propagated with the projected Hamiltonians Ĥ P̂ ±, whose symbols read

H(x,p)	±
0 (x,p) = h±(x,p)	±

0 (x,p)

to leading order. We therefore expect the equations of motion generated by the eigenvalue
functions (3.4),

ẋ±(t) = {h±,x±(t)} ṗ±(t) = {h±,p±(t)} (5.1)

to play an important role for the classical limit of the quantum time evolution. The solutions
to (5.1) define the Hamiltonian flows �t

±(p,x) = (p±(t),x±(t)), with (p±(0),x±(0)) =
(p,x), on phase space. These flows represent the classical dynamics of relativistic particles
(and anti-particles). Spin is absent from these expressions, reflecting the fact that a priori spin
is a quantum mechanical concept and its classical counterpart has to be recovered in systematic
semiclassical approximations of the quantum system.

In the present situation the kinematics and the dynamics of spin are encoded in the matrix
part of the symbols of observables. For an observable B̂ ∈ Oinv the leading semiclassical
order of its symbol is composed of the functions(

	±
0 B0	

±
0

)
(x,p) (5.2)
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taking values in the (Hermitian) 4 × 4 matrices. These matrices act on the two-dimensional
subspaces 	±

0 (x,p)C4 of C
4, which can be viewed as Hilbert spaces of a spin 1/2 attached

to a classical particle or anti-particle, respectively, at the point (x,p) in phase space. In
order to work in these two-dimensional spaces explicitly, one can introduce orthonormal
bases

{
e±

1 (x,p), e±
2 (x,p)

}
for each of them. For convenience the vectors e±

k (x,p) ∈ C
4

are chosen as eigenvectors of the symbol matrix H(x,p) with eigenvalues h±(x,p). Upon
expanding vectors from 	±

0 (x,p)C4 in these bases one introduces isometries V±(x,p):
C

2 → 	±
0 (x,p)C4, such that V±(x,p)V ∗

±(x,p) = 	±
0 (x,p) and V ∗

±(x,p)V±(x,p) = 112.
A possible choice for these isometries is

V+(x,p) = 1√
2ε(x,p)(ε(x,p) + mc2)

(
(ε(x,p) + mc2)112

(cp − eA(x)) · σ

)

V−(x,p) = 1√
2ε(x,p)(ε(x,p) + mc2)

(
(cp − eA(x)) ·σ

−(ε(x,p) + mc2)112

)
.

That way the diagonal blocks (5.2) can be represented in terms of the 2 × 2 matrices(
V ∗

±B0V±
)
(x,p) (5.3)

which are Hermitian if B0(x,p) is Hermitian on C
4.

The matrix-valued functions (5.3) can be mapped in a one–to–one manner to real-valued
functions on the sphere S2 via

b±
0 (x,p,n) := 1

2 tr
(
�1/2(n)

(
V ∗

±B0V±
)
(x,p)

)
(5.4)

where n ∈ R
3 with |n| = 1 is viewed as a point on S2 and

�1/2(n) := 1
2 (112 +

√
3n · σ)

takes values in the Hermitian 2 × 2 matrices, see [VGB89]. The quantizers �1/2(n) provide
a quantum–classical correspondence on the sphere that is covariant with respect to SU(2)

rotations in the following sense:

g�1/2(n)g−1 = �1/2(R(g)n). (5.5)

Here R(g) ∈ SO(3) is a rotation associated with g ∈ SU(2) through gn·σg−1 = (R(g)n)·σ;
see [BGK01] for further details. The semiclassically leading term of a (block-diagonal)
semiclassical observable B̂ can therefore be represented by two real-valued functions on the
space R

3 × R
3 × S2. Through the relation

(V ∗
±B0V±)(x,p) =

∫
S2

b±
0 (x,p,n)�1/2(n) dn

where dn is the normalized area form on S2, the matrix-valued expressions (5.3) are
unambiguously recovered from the functions (5.4) [BGK01].

The point n ∈ S2 that arises as an additional variable in a general classical observable
(5.4) can be viewed as a classical equivalent of spin. This interpretation is suggested by the
fact that the classical observable (5.4) associated with quantum spin,

B̂ = h̄

2
�k with �k :=

(
σk 0
0 σk

)
can be calculated as

b±
0 (x,p,n) = h̄

2
tr(�1/2(n)V ∗

±(x,p)�kV±(x,p))

=
√

1

2

(
1

2
+ 1

)
h̄nk.
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Up to its normalization, which depends on h̄ and the spin quantum number s = 1/2, the point
n ∈ S2 can thus be considered as a classical spin. The latter is therefore represented on its
natural phase space S2, and the space R

3 ×R
3 ×S2 on which the classical observables (5.4) are

defined can be viewed as the combined phase space of the translational and the spin degrees
of freedom.

We now want to identify the classical dynamics of both the translational and the spin
degrees of freedom that emerge in the semiclassical limit of the quantum dynamics generated
by the Hamiltonian Ĥ . To this end we recall thatOinv was defined to contain those semiclassical
observables B̂ ∈ Osc whose time evolutions B̂(t) = Û (t)∗B̂Û (t) are again semiclassical
observables. Hence B̂(t) is a Weyl operator of the form (3.2) with symbol B(t)(x,p; h̄) that
possesses an asymptotic expansion of the type (4.1). The leading term B(t)0(x,p) in this
expansion then yields the classical time evolution of both types of degrees of freedom.

Theorem 5.1. When B̂ ∈ Oinv the semiclassically leading term in the asymptotic expansion
of the symbol of its time evolution B̂(t) reads

B(t)0(x,p) =
∑

ν∈{+,−}
d∗

ν (x,p, t)
(
	ν

0B0	
ν
0

)(
�t

ν(x,p)
)
dν(x,p, t). (5.6)

The unitary 4 × 4 matrices d±(x,p, t) are determined by the transport equations

ḋ±(x,p, t) + iH±
(
�t

±(x,p)
)
d±(p,x, t) = 0 d±(p,x, 0) = 14 (5.7)

where the effective spin-Hamiltonians H± are defined as

H± := −i
[
	±

0 ,
{
h±,	±

0

}]
+

i

2

(
h±	±

0

{
	±

0 ,	±
0

}
	±

0 + 	±
0

{
	±

0 ,H − h±	±
0

}
	±

0

)
. (5.8)

We refrain from giving explicit expressions for the 4×4 effective spin-Hamiltonians (5.8)
here since below we will only work in a 2 × 2 representation; instead we refer to [Spo00]. A
statement of the type made in theorem 5.1 is usually called an Egorov theorem [Ego69]. The
present version is covered by the Egorov theorem in [BG04], where one can also find a proof.

The 4 × 4 matrices d±(x,p, t) can be shown to map the two-dimensional subspaces
	±

0 (x,p)C4 of C
4 unitarily to the propagated subspaces 	±

0

(
�t

±(x,p)
)
C

4 [BG04]. They
hence describe the transport of the (anti-) particle spin along the classical trajectories
(x±(t),p±(t)). If one prefers to work in the orthonormal eigenbases

{
e±

1 (x,p), e±
2 (x,p)

}
of

the spaces 	±
0 (x,p)C4 one can introduce the unitary 2 × 2 matrices

D±(x,p, t) := V ∗
±
(
�t

±(x,p)
)
d±(x,p, t)V±(x,p)

which are determined by the equations

Ḋ±(x,p, t) +
i

2
C±

(
�t

±(x,p)
) · σD±(p,x, t) = 0 D±(p,x, 0) = 12 (5.9)

following from (5.7). The transformed effective spin-Hamiltonians C± · σ/2 derive from
(5.8) and can be expressed in terms of the electromagnetic fields through

C±(x,p) = ∓ ec

ε(x,p)

(
B(x) ± 1

ε(x,p) + mc2
(cE(x) × (cp − eA(x)))

)
where ε(x,p) is defined in (3.7). Since therefore the effective spin-Hamiltonians are Hermitian
and traceless 2 × 2 matrices, the solutions D± of (5.9) are in SU(2). Related results have
previously been obtained in a WKB–type situation [RK63, BK98, BK99] and in the context
of a semiclassical propagation of Wigner functions [Spo00].

The transport matrices D±(x,p, t) carry two-component spinors along the trajectories
�t

±(x,p) and induce a classical spin dynamics along (anti-) particle trajectories. These
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combined classical dynamics can be recovered upon representing the leading symbol (5.6) in
terms of the functions (5.4) on the combined phase space,

b(t)±0 (x,p,n) = 1
2 tr(�1/2(n)(V ∗

±B(t)0V±)(x,p))

= 1
2 tr

(
D±(x,p, t)�1/2(n)D∗

±(x,p, t)(V ∗
±B0V±)

(
�t

±(x,p)
))

= b±
0

(
�t

±(x,p), R(D±(x,p, t))n
)

where in the last line the covariance (5.5) has been used. Hence, in leading semiclassical
order the dynamics of an observable B̂ ∈ Oinv can be expressed in terms of the classical time
evolutions

(x,p) �→ �t
±(x,p) and n �→ n±(t) = R(D±(x,p, t))n. (5.10)

The spin motion on the sphere thus emerging obeys the equation

ṅ±(t) = C±
(
�t

±(x,p)
) × n±(t) n±(0) = n (5.11)

that is implied by (5.9). These spin dynamics exactly coincide with the Thomas precession
that was derived in a purely classical context [Tho27].

Both types of time evolutions in (5.10) can be combined to yield the dynamics

(x,p,n) �→ Y t
±(x,p,n) := (

�t
±(x,p), R(D±(x,p, t))n

)
(5.12)

on the phase space R
3 × R

3 × S2. The properties

Y t=0
± (x,p,n) = (x,p,n) and Y t ′+t

± (x,p,n) = Y t ′
±
(
Y t

±(x,p,n)
)

can easily be established, showing that (5.12) defines flows on the combined phase space.
These flows are composed of the Hamiltonian flows �t

± defined in (5.1) on the ordinary phase
space R

3 × R
3 and the spin dynamics (5.11) on S2 that are driven by the Hamiltonian flows.

Dynamical systems of this type are known as skew-product flows; see, e.g., [CFS82]. They
leave the normalized measures

d�±
E(x,p) dn = 1

vol �±
E

δ(h±(x,p) − E) dx dp dn

on the combined phase space invariant that are products of Liouville measure d�±
E(x,p) on

�±
E (microcanonical ensemble) and the normalized area measure dn on S2. We hence now

conclude that the classical limit of the quantum dynamics generated by the Dirac–Hamiltonian
(3.1) is given by the two skew-product flows (5.12) combining the Hamiltonian relativistic
motion of (anti-) particles with the spin precession along the (anti-) particle trajectories.

6. Semiclassical behaviour of eigenspinors

In section 3 we saw that in general eigenspinors ψn of the Dirac–Hamiltonian (3.1) cannot
uniquely be associated with either particles or anti-particles. For the purpose of semiclassical
studies we therefore prefer to work with the normalized projected eigenspinors

φ±
n := P̂ ±ψn

‖P̂ ±ψn‖
. (6.1)

Due to the fact that the projectors almost commute with the Hamiltonian (3.8), the quantities
(6.1) are almost eigenspinors (quasimodes) of both Ĥ and Ĥ P̂ ±,∥∥(Ĥ − En)φ

±
n

∥∥ = r±
n and

∥∥(Ĥ P̂ ± − En)φ
±
n

∥∥ = s±
n
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with error terms r±
n and s±

n given by

r±
n = ‖[Ĥ , P̂ ±]ψn‖

‖P̂ ±ψn‖
and s±

n = ‖[Ĥ P̂ ±, P̂ ±]ψn‖
‖P̂ ±ψn‖

.

Thus, if the norms ‖P̂ ±ψn‖ of the projected eigenspinors are not too small, i.e. if
‖P̂ ±ψn‖ � Ch̄N holds for some C > 0 and N < ∞, the error terms r±

n and s±
n are of

size h̄∞.
This property implies that if the spectra of the operators Ĥ and Ĥ P̂ ± are discrete in the

intervals
[
En −r±

n , En +r±
n

]
and

[
En −s±

n , En +s±
n

]
, respectively, these operators each possess

at least one eigenvalue in the respective interval; see, e.g., [Laz93]. For Ĥ the statement is
trivial since En is known to be an eigenvalue, but regarding Ĥ P̂ ± it provides new insight. In
particular, the mean spectral densities of the operators Ĥ P̂ ± are in general smaller than that of
Ĥ , see (6.2) below. Hence, the eigenvalues En of Ĥ must cluster in such a way that successive
intervals

[
En − r±

n , En + r±
n

]
overlap and therefore several such intervals share eigenvalues

of Ĥ P̂ ±. That way the separation of eigenvalues of Ĥ is linked with the norms of projected
eigenspinors P̂ ±ψn. Suppose, e.g., all norms were bounded from below by ‖P̂ ±ψn‖ � Ch̄N ,
such that r±

n , s±
n = O(h̄∞), then sufficiently many eigenvalues En have to cluster on a scale

O(h̄∞). On the other hand, if the separations of neighbouring eigenvalues of Ĥ were known
to be bounded from below by h̄N , a certain number of eigenspinor–projections would have to
possess norms of size h̄∞ in order to produce sufficiently large errors r±

n .
More quantitative statements can be made on the ground of Weyl’s law for the numbers

NE,ω and N±
E,ω of eigenvalues the operators Ĥ and Ĥ P̂ ±, respectively, possess in the interval

[E − h̄ω,E + h̄ω]. Namely, as h̄ → 0

NE,ω ∼ 2ω

π

vol �+
E + vol �−

E

(2πh̄)2
N±

E,ω ∼ 2ω

π

vol �±
E

(2πh̄)2
. (6.2)

Thus, if at energy E both energy shells �±
E in phase space have positive volumes, the ratios

N±
E,ω

/
NE,ω governing the previous discussion are semiclassically determined by the relative

fraction of the volumes of the associated energy shells. Moreover, a version of Weyl’s law
that includes expectation values of operators (Szegö limit formula) yields [BG04]

N±
E,ω ∼

∑
E−h̄ω�En�E+h̄ω

‖P̂ ±ψn‖2. (6.3)

This relation may suggest two (extreme) scenarios:

(i) Roughly N±
E,ω of the projected eigenspinors P̂ ±ψn are close to ψn and the remaining

projections are semiclassically small.
(ii) The projections P̂ ±ψn equidistribute on both energy shells in the sense that each ‖P̂ ±ψn‖2

is approximately N±
E,ω

/
NE,ω.

On the ground of the existing knowledge one cannot exclude either alternative, or a mixture
of both. However, a comparison with symmetric versus asymmetric double-well potentials,
where an eigenfunction either localizes in one well (asymmetric case, compare (i)), or has
noticeable projections to both wells (symmetric case, compare (ii)), suggests that in generic
cases, scenario (i) should be expected.

What is possible, though, is to estimate the number of projected eigenspinors with norms
that are bounded from below,

N±
δ := #{n;E − h̄ω � En � E + h̄ω, ‖P̂ ±ψn‖2 � δ}.
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From (6.2) and (6.3) it follows that

lim
h̄→0

N±
δ

NE,ω

� vol �±
E

vol �+
E + vol �−

E

− δ.

Therefore, if δ is sufficiently small (independent of h̄) the right-hand side is positive and
thus a finite portion of the projected eigenspinors has semiclassically non-vanishing norms.
This observation allows us to take the associated normalized projected eigenspinors (6.1) into
account for the following considerations.

We now explore the consequences an ergodic behaviour of the classical skew-product
dynamics Y t

± exerts on the projected eigenspinors. In an analogous situation for Schrödinger–
Hamiltonians the ergodicity of the associated Hamiltonian flow implies that the Wigner
transforms of almost all eigenfunctions equidistribute on the corresponding energy shell.
This result, known as quantum ergodicity, goes back to Shnirelman [Shn74] and has been
fully proved in [Zel87, CdV85, HMR87]. In the case under study we now suppose that the
energy E lies in an interval (E−, E+), in which the spectrum of the Dirac–Hamiltonian is
discrete. Moreover, at least one of the classical energy shells �+

E and �−
E shall be non-empty

and the periodic orbits of the Hamiltonian flows �t
± shall be of measure zero on �±

E . If then
Y t

± is ergodic on �±
E × S2, the time average of a classical observable of the type (5.4) equals

its phase-space average,

lim
T →∞

1

T

∫ T

0
b±

0

(
Y t

±(x,p,n)
)
dt =

∫
�±

E

∫
S2

b±
0 (x′,p′,n′) d�±

E(x′,p′) dn′ =: M±
E

(
b±

0

)
for almost all initial conditions (x,p,n). In this setting the main result on quantum ergodicity
of projected eigenspinors is (for a full proof see [BG04]) the following.

Theorem 6.1. Under the conditions stated above, in particular if the skew-product flow Y t
± is

ergodic on �±
E × S2, in every sequence

{
φ±

n

}
n∈N

of normalized projected eigenspinors with

associated eigenvalues En ∈ [E − h̄ω,E + h̄ω] and ‖P̂ ±ψn‖2 � δ there exists a subsequence{
φ±

nα

}
α∈N

of density 1, i.e.

lim
h̄→0

#{α; ‖P̂ ±ψnα
‖2 � δ}

#{n; ‖P̂ ±ψn‖2 � δ} = 1

such that for every semiclassical observable B̂ ∈ Osc

lim
h̄→0

〈
φ±

nα
, B̂φ±

nα

〉 = M±
E

(
b±

0

)
. (6.4)

The density-1 subsequence
{
φ±

nα

}
α∈N

can be chosen independent of the observable.

The statement of this theorem, which says that in the case of classical ergodicity quantum
mechanical expectation values converge to a classical ergodic mean, can be rephrased in terms
of more explicit phase-space lifts. To this end one first introduces the matrix-valued Wigner
functions

W [ψ](x,p) :=
∫

R
3

e− i
h̄
p·yψ

(
x − 1

2
y

)
⊗ ψ

(
x +

1

2
y

)
dy

associated with any ψ ∈ L2(R3) ⊗ C
4. Following the prescription (5.4) this 4 × 4 matrix can

be converted into scalar form through

w±[ψ](x,p,n) := 1
2 tr(�1/2(n)(V ∗

±W [ψ]V±)(x,p)).
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Due to the projections inherent in the expectation value on the left-hand side of (6.4) only one
diagonal block of the observable contributes, so that this expectation value can be reformulated
as〈
φ±

nα
, B̂φ±

nα

〉 = 1

(2πh̄)3

∫ ∫
tr
(
W

[
φ±

nα

]
P ±#B#P ±)

(x,p) dx dp

= 1

(2πh̄)3

∫ ∫
tr
((

V ∗
±W

[
φ±

nα

]
V±

)
(V ∗

±B0V±)(x,p)(1 + O(h̄))
)

dx dp

= 1

(2πh̄)3

∫ ∫ ∫ (
w±

[
φ±

nα

]
(x,p,n)b±

0 (x,p,n)(1 + O(h̄))
)

dx dp dn.

The principal result (6.4) of quantum ergodicity can hence be read as saying that

lim
h̄→0

w±
[
φ±

nα

]
(x,p,n)

(2πh̄)3
= 1

vol �±
E

δ(h±(x,p) − E).

This relation has to be understood in a weak sense, i.e. after integration with a symbol
b±

0 (x,p,n). Hence, the scalar Wigner transforms of projected eigenspinors become
semiclassically equidistributed on the associated phase space �±

E × S2 once the classical
time evolution Y t

± is ergodic on this space.
As the discussion at the beginning of this section shows, the difficulties with statements

about genuine eigenspinors derive from the coexistence of the particle and anti-particle
subspaces, and because interactions between these subspaces on a scale h̄∞ cannot be
controlled within the present setting. However, if one of the energy shells �±

E was empty there
is only one classical manifold onto which phase-space lifts of eigenspinors could condense,
namely �∓

E × S2. In such a case, say when �−
E is empty, the statement of theorem 6.1 applies

to a density 1 subsequence
{
ψnα

}
of eigenspinors themselves, such that

lim
h̄→0

〈
ψnα

, P̂ +B̂P̂ +ψnα

〉 = M±
E

(
b±

0

)
and lim

h̄→0

〈
ψnα

, P̂ −B̂P̂ −ψnα

〉 = 0. (6.5)

A corresponding statement then holds for the associated scalar Wigner transforms w±
[
ψnα

]
.

It has been mentioned previously that the restriction of having only one non-empty energy
shell at energy E requires potentials that do not vary too strongly; e.g., φ(x) must not vary
as much as 2mc2. This condition is fulfilled in many physically relevant situations, in which
(6.5) therefore applies if only the classical particle dynamics Y t

+ are ergodic.
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[CdV85] Colin de Verdière Y 1985 Ergodicité et fonctions propres du laplacien Commun. Math. Phys. 102 497–502
[CFS82] Cornfeld I P, Fomin S V and Sinai Ya G 1982 Ergodic Theory (Grundlehren der mathematischen

Wissenschaften vol 245) (Berlin: Springer)
[Cor01] Cordes H O 2001 Dirac algebra and Foldy–Wouthuysen transform Evolution Equations and Their

Applications in Physical and Life Sciences (Lecture Notes in Pure and Applied Mathematics
vol 215) (New York: Dekker) pp 335–46

[CV71] Calderón P and Vaillancourt R 1971 On the boundedness of pseudo-differential operators J. Math. Soc.
Japan 23 374–8
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